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The axial halogen atoms as well as the equatorial q*-C,H, and (T,G’-N,N’ 
chelate bonded t-BuNCHCHNt-Bu ligands in pentacoordinate ]PtCl,(~*-C,H,)- 
(t-BuNCHClINt-Bu)] can be displaced with retention of the trigonal bipyrami- 
dal structure. Halogen-halogen exchange is initiated by formation of an ionic 
intermediate [PtCl(~‘-C,H,)(t-BuNCHCHNt-Bu)]Cl. The reversible exchange of 
the equatorial ligands with olefins or bide&ate diimine or dinmine ligands 
(N+) is proposed to proceed via pentacoordinate intermediates 
[PtCla($-C,H,)(g*-olefin)(t-BuNCHCENt-Bu)] and [PtC12(q2-C2H,)(t-BuNCH- 
CHNt-Bu)(N-N)], respectively in which the a-d&-nine is o-N monodentate 
bonded. Selective coordination of cis-olefins (maleic anhydride, dimethyl- 
malonate, methylacrylate or acrolein) has been observed. Some relevant ‘H and 
13C NMR data for the novel pentacoordinate Pt?-olefin complexes are given. 

Both pyridine (L) [l] and olefin (01) exchange [2] in complexes trans- 
[PtCl,(q24)L] have been demonstrated to proceed via per&coordinate transi- 
tion states [PtC12(~*-ol)L2] and[PtC12(~2-ol)2L], respectively. In the course of 
our investigations on the coordination behaviour of ar-diimines, RN=CHCH=NR, 
(R-dim) towards Pd rl, Ptr ’ and Rh’ ]3-71, we found that stable analogues of 
the [l?tCl,(~*4)L,] transition state can be prepared if L2 is a bidentate R-dim 
ligand and the R group is connected to the nitrogen via a quarternary carbon 
atom, This enabled us to study separately the factors determining the stability 
and the molecular dynamics of Ptll-olefin complexes possessing a pentacoordi- 
nate structure. For example, for the first time the occurrence of olefin rotation 
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at pentacoordinate Ptr’ centers could be detected 161. Furthermore, it 
appeared that the q*-bonded olefins stabilized the Q,o’-N,N’ chelating coordina- 
tion mode of the R-dim ligand. Replacement of the olefin by a phosphine 
ligand or a second R-dim l&and changes the coordination mode of-R-dim into 
either a monodentate a-N [3,4], bridging a-N, of-N’ [3,5,6,7] or fluxional 
o-N * o’-N’ [4] type. 

In the complexes containing fluxional bonded R-dim the N to N’ site 
exchange occurs intramoleculsrly and involves a pentacoordinate transition 
state [PtCl,(PR,)(R-dim)] 141. In particular, this observation, which indicates 
that the R-dim ligsnd can act both as a o-N (Ze) and ~,a’-N,N’ (4e) ligand, 
encouraged us to study ligand exchange reactions with the stable 1% Pt-R-dim 
complex [PtCl,(~*-C,H~)(t-Bu-dim)] (I). In this paper we report the results of 
a study of the exchange of a, the axial Cl atoms and b, the equatorial g*-C,H, 
and o,o’-N,N’ dhelate bonded t-BuN=CHCH=Nt-Bu ligands *. 

Halogen exchange in I [vas(Pt-Cl) 33% cm-‘] was found to be very slow. 
Quantitative Cl/I exchange to give [PtIz(s2-C,H,)(t-Budim)] (II: v,(Pt-I) 178 
cm” ) occurred during 24 h iu the l/3 molar reaction of I with NaI in acetone. 
The reaction of I with Nal3r is much slower (>3 days) and a better route for 
obtaining [PtBr,($-(C+H4)(t-Budim)] (HI) (v,(Pt-Br) 256 cm-‘) is the reaction 
of K[PtBr3(~*C2H,)] with t-Budim. I-III are non-electrolytes in acetone and 
are monomeric in CHCIS. ‘H and 13C NMR spectrometry revealed that II and 
III have the same tigonal bipyramidal structure as was established for I [3b,6]. 
On going from square planar [PtCl,(~*-C,H,)L J to pentacoordinate 
[PtCl,(~*-C,H,)(R-dim)] the q*-C,H, ligaud shows a diagnostic increase of 
J(1g5Pt-‘3C) and 2J(1g5Pt-1H) values as well as the upfield shift of 6(C) and 
6(H) [lc,6,8-11] ; in this respect the NMR data of II and HI are clearly consis- 
tent with the trigonal bipyramidal formulation [cf. data in Table I]. 

In order to exclude the possibility that these halogen exchange reactions 
occur via intermediate formation of Na[PtX,(q*-C,H,)], a solution of I and HI 
(3/4 molar ratio) in CDCIS was stirred at room temperature aud the reaction 
was monitored by ‘H and 13C NMR spectrometry.Ufter 10 days an equilibrium 
was reached, invoking a mixture of I, III: and the mixed halide product 
[PtClBr(q*-C,H,)(t-Budim)] (IV), (see Table 1). This suggests that these 
exchange reactions are initiated by the formation of an ionic intermediate 
[PtX(?j*-C,H,)(t-BU)] Y (V) **. In this respect the recently established 
X-ray crystal structure of [PtCl(77*-C,H,)(tmed)] ClO, is of interest [ 1.21. 

The a,~‘-N,N’ bonde.d t-Budim ligand of I can readily be replaced by reac- 
tion with excess of other nitrogen ligands e.g. pyridines, 1,2_dismines or other 
R-dim ligands. For example, the l/5 molar reaction of I with EtMe,Ckiim in 
CHC13 or CH&l2 resulted in free t-Budim and [PtCl(~*-C;H4)(EtMe2Cdim)], 
which was isolated almost quantitatively. Furthermore, reaction of I with 
2,4,6-trimethylpyridine in a l/5 molar ratio afforded pure trans- 

* Satisfactory C, H. N and X ardyyses were obtained for all new CO~POUU&. 

** In view of the speciftc formation of the fmns products we assume. that the catien interacts with 
neutral I_ thus forming a binudear cationic species. e_g_ [Cl(t-Bu-dim)<+r*C,)~C~~~ 
h*+ H4)<t-!&Mm)]+ which upon dissociation produces either the starting species or the 
exchange products. Attempts to synthesize comxiounds V in which X = halogen and Y = BF; or 
PF; failed. 
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Fig_ 1. A. Pentacoordinate structure containing ~.a’-N.N’ (4e) bonded R-dim. B. Two possiile confonna- 
tions of the intermediate. formed by Pt-N dissociation and concomitant rotation around the C-C bond. 
which contains a-N <!2e) bonded R-dim i.e. I. X = C1; II. X = I; III. X = Br; IV. X = Ek or Cl. 

[PtCl,(~z-C,H,)(2,4,6-@imethylpyridine)]. The reverse reaction using excess 
t-Bu-dim appeared to be a convenient alternative route for the synthesis of 
[PtCl,(q*-ol)(R.-dim)] complexes. Likewise, the novel complexes 
WX7*-CzH‘+) c o,o’-N,N’-R(H)NCH,CH,N(H)R}] (VI, R = t-Bu, EtMe,C-) (see 
Table I) * could be directly prepared by reacting R(H)NCH,CH,N(H)R 
(R-&am) with either tetracoordinate complexes [PtCl,(q*-C,H,)(2,4,6-tri- 
methylpyridine)] or K[PtCl,(q*-C,H,)] , or with pentacoordinate 
[PtCl,(q*-C,H,)(R-dim)] complexes. 

Two observations indicate that the olefin-Pt” bond remains intact during 
the exchange reaction which is at the slow exchange limit on the NMR time 
scale. Firstly, 13C and ‘H NMR data of [PtC12(q291)(Rdim)] (where R and 01 
ate prochiral) revealed that in solution no olefin--pt” bond dissociation occurs 
[6]. SecondIy, cleavage of the oIefin--Pt bond in [PtCl,(q*-ol)( Rdim)] or 
[PtC12(q2-ol)(Rdi~)] complexes which occurs at higher temperatures, is 
irreversible both in solution and in the solid. The resulting ck-[PtCl,(R-dim)] 
or cis- [PtCl,( R-d&n)] (VII) complexes, in which the bidentate ligands are 
a$-N,N’ bonded, are sparingly soluble in CHC13 and acetone. This excludes the 
formation of a cis-dichloroplatinum complex VII as an intermediate in the sub- 
stitution reactions. 

In view of our previous results [4] it seems likely, therefore, that in the first 
step of the substitution reaction the R-dim ligand becomes a a-N (2e) donor by 
Pt-N dissociation. This occurs with concomitant rotation around the central 
C-C bond, which moves the non-coordinated C=Nt-Bu part of the t-Bu-dim 
ligand from the Pt coordination sphere (see Fig. 1). This is followed by coor- 
dination of the attaching R-dim, R-diam or pyridine ligand. It is interesting to 
note that R-dim/R’& or R&am exchange implies formation of a pentacoor- 
dinate transition state containing two u-N (2e) monodentate bonded Rdim 
ligands. 

* These results point to a trigonal biprramidal structure. with the Cl atoms in axial Position and the 
q*-bonded olefin and u.d-N,N’ bonded R(H)NCH2CH2N<H)R liganda in the equatorial Plane. The 
fact that only one resonance pattern is observed indicates that either only one diatereomer (the 
coordinated N atoms are stable chiral centers) is present in solution or rapid inversion of configure- 
tion at the N atoms takes place. 
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The same type of mechanism might operate for the observed specific olefin 
exchange of I with mono- and &&-substituted olefins_ For example pure 
[PtC’&(q*-ol)(t-Budim)] in which 01 represents methylacrylate (VIII), dimethyl- 
malonate (IX) or maleic anhydride (X) * was synthesized by treating a solution 
of I in CH2ClZ or ace&e with a 3-5 fold excess of the olefin for 348 h. In 
contrast, no reaction was observed when I was treated with dimethylfumarate, 
not even with a 5-fold excess of the olefin an4 reaction times exceeding 7 days. 
No exchange occurs between I and crotonaldehyde, metacrolein, tmns-stilbene 
and tetracyanoetbene. 

This surprising selectivity for the exchange of cis-olefins is further demon- 
strated by the reaction of an l/l mixture of cis- and trans-C,H,(COOCH,), 
with a 2-3 fold excess of the Pt” complex I in CS,Cl,. After 48 h a solution 
containing IX, unreacted I, and the trans-olefin was observed_ This result is of 
synthetic interest because the c&s-olefin C1H2(COOCH,), can be recovered from 
isolated IX by treatment with C,H, (50 atm) in CHCl, solution. 
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