Journal of Organometallic Chemistry, 187 (1980) C17–C21 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

REACTIONS OF STABLE [PtCl₂(η^2 -C₂H₄)(t-BuNCHCHNt-Bu)]. RETENTION OF THE PENTACOORDINATE STRUCTURE UPON HALOGEN EXCHANGE AND LIGAND SUBSTITUTION WITH OLEFINS, α -DIIMINES AND N,N'-DISUBSTITUTED 1,2-DIAMINOETHANES

HENK VAN DER POEL and GERARD VAN KOTEN *

Anorganisch Chemisch Laboratorium, University of Amsterdam, J.H. van 't Hoff Instituut, Nieuwe Achtergracht 166, 1018 WV Amsterdam (The Netherlands)

(Received November 19th, 1979)

Summary

The axial halogen atoms as well as the equatorial η^2 -C₂H₄ and $\sigma, \sigma' - N, N'$ chelate bonded t-BuNCHCHNt-Bu ligands in pentacoordinate [PtCl₂(η^2 -C₂H₄)-(t-BuNCHCHNt-Bu)] can be displaced with retention of the trigonal bipyramidal structure. Halogen—halogen exchange is initiated by formation of an ionic intermediate [PtCl(η^2 -C₂H₄)(t-BuNCHCHNt-Bu)]Cl. The reversible exchange of the equatorial ligands with olefins or bidentate diimine or diamine ligands (N—N) is proposed to proceed via pentacoordinate intermediates [PtCl₂(η^2 -C₂H₄)(η^2 -olefin)(t-BuNCHCHNt-Bu)] and [PtCl₂(η^2 -C₂H₄)(t-BuNCH-CHNt-Bu)(N-N)], respectively in which the α -diimine is σ -N monodentate bonded. Selective coordination of *cis*-olefins (maleic anhydride, dimethylmalonate, methylacrylate or acrolein) has been observed. Some relevant ¹H and ¹³C NMR data for the novel pentacoordinate Pt^{II}-olefin complexes are given.

Both pyridine (L) [1] and olefin (ol) exchange [2] in complexes trans-[PtCl₂(η^2 -ol)L] have been demonstrated to proceed via pentacoordinate transition states [PtCl₂(η^2 -ol)L₂] and [PtCl₂(η^2 -ol)₂L], respectively. In the course of our investigations on the coordination behaviour of α -diimines, RN=CHCH=NR, (R-dim) towards Pd^{II}, Pt^{II} and Rh^I [3-7], we found that stable analogues of the [PtCl₂(η^2 -ol)L₂] transition state can be prepared if L₂ is a bidentate R-dim ligand and the R group is connected to the nitrogen via a quarternary carbon atom. This enabled us to study separately the factors determining the stability and the molecular dynamics of Pt^{II}-olefin complexes possessing a pentacoordinate structure. For example, for the first time the occurrence of olefin rotation

^{*} To whom correspondence should be addressed.

	1 NMR (6 , ppm)	8			13C NMR (6, p	q (md			
	CH ₃	CH ₂	HC = N	C ₂ H ₄	CH ₃	CH ₂	0-N	N=C	C_2H_4
[PtCl ₂ (n ² -C ₂ H ₄)(t-Bu-dim)]	1.67(5)		8,68 (36.5)(s)	3.63 (71)	30.60 (4)		64.30 (25)	156.80	38.10 (292)
[PtBr ₂ (n ² -C ₂ H ₄)(t-Bu-dim)]	1.68(s)		8.67 (37)(s)	3.63 (70)	31.28		64.35 (24)	157,56	35.59 (286)
[PtBrCl(n ² -C ₂ H ₄)(t-Bu-dim)]	1,68(s)		8.67 (37)(s)	3.56 (70)	30.87		64.31 (24)	157.14	36.78 (287)
$[Ptl_{3}(n^{2}-C_{3}H_{A})(t-Bu-dim)]^{c}$	1.77(s)		8.68 (38)(s)	3.68 (71)					
[PtCl, (n ² -C ₂ H ₄)(EtMe, C-dim)]	0.91(t); 1.63(s)	2.05(q)	8.58 (36)(s)	3.55 (71)	8.76; 27.71	39,18	67.09 (25)	157,14	39.18 (293)
[PtCl2 (n ² -C2 Ha)(t-Bu-diam)]	1.43(8)	3.03(b)		3.37 (71)	29.25 (6)	43,87 (9)	66.11 (4)		35.71 (298)
[PtCl ₂ (n ² -C ₂ H ₄)(NC ₅ H ₅)] ^d				4.92 (61)					75.3 (164)
[PtOl2(n ² -02H ₄)(NC5H ₅)] ^e				3.9 (70)					:
a to ADGI, volation to TIME V195	Dt I UN Southlase /	n Ur/ hatur	an navanthasie va	o no helton	Varian T 60 speet	rometer ^b In	CDCla relative	to TMS	blined CDCla
1 - 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	r (m Hz) between n	uranthesis:	recorded on a Var	ian Cift 20 ar	victiometer. ^C Re	corded in ace	tone relative to	TMS. d T	aken from

¹H and ¹³C nmr data of [Picl₂(η^2 - c_2H_4L] complexes

TABLE 1

ļ reference, J(* ' " true ' C) coupling (in Hz) between part ref. 11. ^G Taken from ref. 1c. at pentacoordinate Pt^{II} centers could be detected [6]. Furthermore, it appeared that the η^2 -bonded olefins stabilized the $\sigma, \sigma' \cdot N, N'$ chelating coordination mode of the R-dim ligand. Replacement of the olefin by a phosphine ligand or a second R-dim ligand changes the coordination mode of R-dim into either a monodentate σ -N [3,4], bridging σ -N, σ' -N' [3,5,6,7] or fluxional σ -N $\Leftrightarrow \sigma'$ -N' [4] type.

In the complexes containing fluxional bonded R-dim the N to N' site exchange occurs intramolecularly and involves a pentacoordinate transition state [PtCl₂(PR₃)(R-dim)] [4]. In particular, this observation, which indicates that the R-dim ligand can act both as a σ -N (2e) and σ , σ' -N,N' (4e) ligand, encouraged us to study ligand exchange reactions with the stable 18e Pt-R-dim complex [PtCl₂(η^2 -C₂H₄)(t-Bu-dim)] (I). In this paper we report the results of a study of the exchange of a, the axial Cl atoms and b, the equatorial η^2 -C₂H₄ and σ , σ' -N,N' chelate bonded t-BuN=CHCH=Nt-Bu ligands *.

Halogen exchange in I [ν_{as} (Pt—Cl) 332 cm⁻¹] was found to be very slow. Quantitative Cl/I exchange to give [PtI₂(η^2 -C₂H₄)(t-Bu-dim)] (II: ν_{as} (Pt—I) 178 cm⁻¹) occurred during 24 h in the 1/3 molar reaction of I with NaI in acetone. The reaction of I with NaBr is much slower (>3 days) and a better route for obtaining [PtBr₂(η^2 -(C₂H₄)(t-Bu-dim)] (III) (ν_{as} (Pt—Br) 256 cm⁻¹) is the reaction of K[PtBr₃(η^2 -C₂H₄)] with t-Bu-dim. I—III are non-electrolytes in acetone and are monomeric in CHCl₃. ¹H and ¹³C NMR spectrometry revealed that II and III have the same trigonal bipyramidal structure as was established for I [3b,6]. On going from square planar [PtCl₂(η^2 -C₂H₄)L] to pentacoordinate [PtCl₂(η^2 -C₂H₄)(R-dim)] the η^2 -C₂H₄ ligand shows a diagnostic increase of $J(^{195}\text{Pt}-^{13}\text{C})$ and $^2J(^{195}\text{Pt}-^{1}\text{H})$ values as well as the upfield shift of $\delta(C)$ and $\delta(H)$ [1c,6,8—11]; in this respect the NMR data of II and III are clearly consistent with the trigonal bipyramidal formulation [cf. data in Table 1].

In order to exclude the possibility that these halogen exchange reactions occur via intermediate formation of Na[PtX₃(η^2 -C₂H₄)], a solution of I and III (3/4 molar ratio) in CDCl₃ was stirred at room temperature and the reaction was monitored by ¹H and ¹³C NMR spectrometry. (After 10 days an equilibrium was reached, invoking a mixture of I, III and the mixed halide product [PtClBr(η^2 -C₂H₄)(t-Bu-dim)] (IV), (see Table 1). This suggests that these exchange reactions are initiated by the formation of an ionic intermediate [PtX(η^2 -C₂H₄)(t-Bu-dim)] Y (V) **. In this respect the recently established X-ray crystal structure of [PtCl(η^2 -C₂H₄)(tmed)] ClO₄ is of interest [12].

The $\sigma, \sigma' - N, N'$ bonded t-Bu-dim ligand of I can readily be replaced by reaction with excess of other nitrogen ligands e.g. pyridines, 1,2-diamines or other R-dim ligands. For example, the 1/5 molar reaction of I with EtMe₂C-dim in CHCl₃ or CH₂Cl₂ resulted in free t-Bu-dim and [PtCl(η^2 -C₂H₄)(EtMe₂C-dim)], which was isolated almost quantitatively. Furthermore, reaction of I with 2,4,6-trimethylpyridine in a 1/5 molar ratio afforded pure *trans*-

^{*} Satisfactory C, H, N and X analyses were obtained for all new compounds.

^{**} In view of the specific formation of the *trans* products we assume, that the cation interacts with neutral I, thus forming a binuclear cationic species, e.g. [Cl(t-Bu-dim)(η²-C₂H₄)PtCl—PtBr-(η²-C₂H₄)(t-Bu-dim)]⁺ which upon dissociation produces either the starting species or the exchange products. Attempts to synthesize compounds V in which X = halogen and Y = BF₄ or PF₆ failed.

Fig. 1. A. Pentacoordinate structure containing $\sigma_{,\sigma}'$ -N,N' (4e) bonded R-dim. B. Two possible conformations of the intermediate, formed by Pt-N dissociation and concomitant rotation around the C-C bond, which contains σ -N (2e) bonded R-dim i.e. I, X = Cl; II, X = I; III, X = Br; IV, X = Br or Cl.

[PtCl₂(η^2 -C₂H₄)(2,4,6-trimethylpyridine)]. The reverse reaction using excess t-Bu-dim appeared to be a convenient alternative route for the synthesis of [PtCl₂(η^2 -ol)(R-dim)] complexes. Likewise, the novel complexes [PtCl₂(η^2 -C₂H₄){ σ , σ' -N,N'-R(H)NCH₂CH₂N(H)R}] (VI, R = t-Bu, EtMe₂C-) (see Table I) * could be directly prepared by reacting R(H)NCH₂CH₂N(H)R (R-diam) with either tetracoordinate complexes [PtCl₂(η^2 -C₂H₄)(2,4,6-trimethylpyridine)] or K[PtCl₃(η^2 -C₂H₄)], or with pentacoordinate [PtCl₂(η^2 -C₂H₄)(R-dim)] complexes.

Two observations indicate that the olefin—Pt^{II} bond remains intact during the exchange reaction which is at the slow exchange limit on the NMR time scale. Firstly, ¹³C and ¹H NMR data of [PtCl₂(η^2 -ol)(R-dim)] (where R and ol are prochiral) revealed that in solution no olefin—Pt^{II} bond dissociation occurs [6]. Secondly, cleavage of the olefin—Pt bond in [PtCl₂(η^2 -ol)(R-dim)] or [PtCl₂(η^2 -ol)(R-diam)] complexes which occurs at higher temperatures, is irreversible both in solution and in the solid. The resulting *cis*-[PtCl₂(R-dim)] or *cis*-[PtCl₂(R-diam)] (VII) complexes, in which the bidentate ligands are σ , σ' -N,N' bonded, are sparingly soluble in CHCl₃ and acetone. This excludes the formation of a *cis*-dichloroplatinum complex VII as an intermediate in the substitution reactions.

In view of our previous results [4] it seems likely, therefore, that in the first step of the substitution reaction the R-dim ligand becomes a σ -N (2e) donor by Pt—N dissociation. This occurs with concomitant rotation around the central C—C bond, which moves the non-coordinated C=Nt-Bu part of the t-Bu-dim ligand from the Pt coordination sphere (see Fig. 1). This is followed by coordination of the attacking R-dim, R-diam or pyridine ligand. It is interesting to note that R-dim/R'-dim or R-diam exchange implies formation of a pentacoordinate transition state containing two σ -N (2e) monodentate bonded R-dim ligands.

^{*} These results point to a trigonal bipyramidal structure, with the Cl atoms in axial position and the η^2 -bonded olefin and $\sigma, \sigma' \cdot N, N'$ bonded R(H)NCH₂CH₂N(H)R ligands in the equatorial plane. The fact that only one resonance pattern is observed indicates that either only one diastereomer (the coordinated N atoms are stable chiral centers) is present in solution or rapid inversion of configuration at the N atoms takes place.

The same type of mechanism might operate for the observed specific olefin exchange of I with mono- and *cis*-di-substituted olefins. For example pure [PtCl₂(η^2 -ol)(t-Bu-dim)] in which ol represents methylacrylate (VIII), dimethylmalonate (IX) or maleic anhydride (X) * was synthesized by treating a solution of I in CH₂Cl₂ or acetone with a 3-5 fold excess of the olefin for 3-48 h. In contrast, no reaction was observed when I was treated with dimethylfumarate, not even with a 5-fold excess of the olefin and reaction times exceeding 7 days. No exchange occurs between I and crotonaldehyde, metacrolein, *trans*-stilbene and tetracyanoethene.

This surprising selectivity for the exchange of *cis*-olefins is further demonstrated by the reaction of an 1/1 mixture of *cis*- and *trans*- $C_2H_2(COOCH_3)_2$ with a 2-3 fold excess of the Pt^{II} complex I in CH₂Cl₂. After 48 h a solution containing IX, unreacted I, and the *trans*-olefin was observed. This result is of synthetic interest because the *cis*-olefin $C_2H_2(COOCH_3)_2$ can be recovered from isolated IX by treatment with C_2H_4 (50 atm) in CHCl₃ solution.

Acknowledgement

Stimulating discussions with Prof. K. Vrieze are gratefully acknowledged.

References

- (a) I.C. Chottard, D. Mansuy and J.F. Bartoli, J. Organometal. Chem., 65 (1974) C 19. (b) G. Natile, L. Maresca and L. Cattalini, J. Chem. Soc. Dalton, (1977) 651. (c) I. Al-Najjar and M. Green, J. Chem. Soc. Chem. Commun., (1977) 212.
- 2 (a) R. Cramer, Inorg. Chem., 14 (1965) 445. (b) C.E. Holloway and J. Fogelman, Canad. J. Chem., 48 (1970) 3802. (c) S.S. Hupp and G. Dahlgren, Inorg. Chem., 15 (1976) 2349.
- 3 (a) H. van der Poel, G. van Koten and K. Vrieze, J. Organometal. Chem., 135 (1977) C 63. (b) H. van der Poel, G. van Koten, K. Vrieze, M. Kokkes and C.H. Stam, J. Organometal. Chem., 175 (1979) C21.
- 4 H. van der Poel, G. van Koten and K. Vrieze, Inorg. Chem., in press.
- 5 H. van der Poel, G. van Koten, K. Vrieze, M. Kokkes and C.H. Stam, Inorg. Chim. Acta, in press.
- 6 H. van der Poel, G. van Koten and K. Vrieze, IXth Int. Conf. Organometal. Chem., Dijon, Abstracts of papers, P31F(1979); Euchem Conf., Venice, Abstracts of papers, C7 (1979).
- 7 B. Crociani, U. Belluco and P. Sandrini, J. Organometal. Chem., 177 (1979) 385.
- 8 L. Maresca, G. Natile, M. Calligaris, P. Delise and L. Randaccio, J. Chem. Soc. Dalton, (1976) 2386.
- 9 A. De Renzi, A. Panunzi, A. Saporito and A. Vitagliano, Gazet. Chim. Ital., 107 (1977) 549.
- 10 L.E. Manzer, Inorg. Chem., 15 (1976) 2354.
- 11 M.A.M. Meester, D.J. Stufkens and K. Vrieze, Inorg. Chim. Acta, 21 (1977) 251.
- 12 A. Tiripicchio. M. Tiripicchio-Camelini, L. Maresca, G. Natile and G. Rizzardi, Cryst. Struct. Commun., 8 (1979) 689.

* PtCl₂(η^2 -ol)(t-Bu-dim): ol = maleic anhydride, ¹H NMR δ (--CH=CH--) 4.58 ppm [²J(¹⁹⁵Pt¹H) 74 Hz]; ol = di-methylmalonate, ¹H NMR δ (--CH=CH--) 4.53 ppm [77 Hz] ¹³C NMR δ (--C=C--) 37.55 ppm [¹J(¹⁹⁵Pt¹³C) 340 Hz]; ol = methylacrylate, ¹³C NMR (C=C--) 39.40 ppm [321 Hz], 34.63 ppm [290 Hz].